Data Mining for Engineering Schools
نویسنده
چکیده
the supervision of the academic performance of engineering students is vital during an early stage of their curricula. Indeed, their grades in specific core/major courses as well as their cumulative General Point Average (GPA) are decisive when pertaining to their ability/condition to pursue Masters’ studies or graduate from a five-year Bachelor-ofEngineering program. Furthermore, these compelling strict requirements not only significantly affect the attrition rates in engineering studies (on top of probation and suspension) but also decide of grant management, developing courseware, and scheduling of programs. In this paper, we present a study that has a twofold objective. First, it attempts at correlating the aforementioned issues with the engineering students’ performance in some key courses taken at early stages of their curricula, then, a predictive model is presented and refined in order to endow advisors and administrators with a powerful decision-making tool when tackling such highly important issues. Matlab Neural Networks Pattern Recognition tool as well as Classification and Regression Trees (CART) are fully deployed with important cross validation and testing. Simulation and prediction results demonstrated a high level of accuracy and offered efficient analysis and information pertinent to the management of engineering schools and programs in the frame of the aforementioned perspective. Keywords-component; Educational Data Mining; Classification and Regression Trees (CART); Relieff tool; Neural Networks; Prediction; Engineering Students’ Performance; Engineering Students’ Enrollment in Masters’ Studies.
منابع مشابه
Data mining for decision making in engineering optimal design
Often in modeling the engineering optimization design problems, the value of objective function(s) is not clearly defined in terms of design variables. Instead it is obtained by some numerical analysis such as FE structural analysis, fluid mechanic analysis, and thermodynamic analysis, etc. Yet, the numerical analyses are considerably time consuming to obtain the final value of objective functi...
متن کاملEvaluation of Data Mining Algorithms for Detection of Liver Disease
Background and Aim: The liver, as one of the largest internal organs in the body, is responsible for many vital functions including purifying and purifying blood, regulating the body's hormones, preserving glucose, and the body. Therefore, disruptions in the functioning of these problems will sometimes be irreparable. Early prediction of these diseases will help their early and effective treatm...
متن کاملApplication of Rough Set Theory in Data Mining for Decision Support Systems (DSSs)
Decision support systems (DSSs) are prevalent information systems for decision making in many competitive business environments. In a DSS, decision making process is intimately related to some factors which determine the quality of information systems and their related products. Traditional approaches to data analysis usually cannot be implemented in sophisticated Companies, where managers ne...
متن کاملEfficient Data Mining with Evolutionary Algorithms for Cloud Computing Application
With the rapid development of the internet, the amount of information and data which are produced, are extremely massive. Hence, client will be confused with huge amount of data, and it is difficult to understand which ones are useful. Data mining can overcome this problem. While data mining is using on cloud computing, it is reducing time of processing, energy usage and costs. As the speed of ...
متن کاملApplication of Kansei engineering and data mining in the Thai ceramic manufacturing
Ceramic is one of the highly competitive products in Thailand. Many Thai ceramic companies are attempting to know the customer needs and perceptions for making favorite products. To know customer needs is the target of designers and to develop a product that must satisfy customers. This research is applied Kansei Engineering (KE) and Data Mining (DM) into the customer driven product design proc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011